Group algebras with minimal Lie derived length
نویسندگان
چکیده
منابع مشابه
Recent Results on the Derived Length of Lie Solvable Group Algebras
Let G be a group with cyclic commutator subgroup of order p and F a field of characteristic p. We obtain the description of the group algebras FG of Lie derived length 3.
متن کاملRemarks on the Lie derived lengths of group algebras of groups with cyclic derived subgroup
The aim of this paper is to give a new elementary proof for our previous theorem, in which the Lie derived length and the strong Lie derived length of group algebras are determined in the case when the derived subgroup of the basic group is cyclic of odd order.
متن کاملDerived Categories and Lie Algebras
We define a topological space for the complexes of fixed dimension vector over the derived category of a finite dimensional algebra with finite global dimension. It has a local structure of affine variety under the action of the algebraic group. We consider the constructible functions which reflect the stratifications of the orbit spaces. By using the convolution rule, we obtain the geometric r...
متن کاملMinimal Faithful Representations of Reductive Lie Algebras
We prove an explicit formula for the invariant μ(g) for finite-dimensional semisimple, and reductive Lie algebras g over C. Here μ(g) is the minimal dimension of a faithful linear representation of g. The result can be used to study Dynkin’s classification of maximal reductive subalgebras of semisimple Lie algebras.
متن کاملLie $^*$-double derivations on Lie $C^*$-algebras
A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2008
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2007.05.029